
A LAB ORIENTED PROJECT  

ON 
DC BALANCED, PARTITIONED-BLOCK, 8B/10B 

TRANSMISSION CODE IMPLEMENTATION USING PSOC 
 
 
 

Prepared under the supervision of 
Mr A Amalin Prince 

(Electrical and Electronics Engineering Group) 
 
 

By 
Aalap Tripathy      2004P34PS208 

 
 

For fulfillment of the requirements for  
Lab Oriented Project (BITS GC 313) 

 
 
 
 

 
 

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - 
PILANI,  

GOA CAMPUS 
ZUARI NAGAR, GOA, INDIA 



 
 

 
Abstract  
 
 This code is well suited for high speed local area networks and similar data links where 
the information format consists of packets variable in length from a few to several hundred 8-
bit bytes. This code translates each source byte into a constrained 10-bit binary sequence which 
has excellent performance parameters (run length=5, maximum digital sum variation=6, 
maximum burst length=5). This is implemented in PSoC by portioning the coder into 5B/6B 
and 3B/4B subordinate coders. 
 
 The project also has enabled UART data from the M8C CPU to be broadcast after the 
8B/10B coding as Transmission Control Protocol / Internet Protocol (TCP/IP) Packets using a 
EAD Controller. Currently an independent EAD Controller (Sparr Electronics) is used. 
However, the PSoC possesses capabilities to be itself programmed as an Ethernet Adaptor 
Controller.  This capability is yet unexplored. 
 
 

Key Words 
 
Programmable System on Chip, Line Coding, Power Spectral Density, PSoC Designer, UART, 
TCP/IP, OSI Layers 

 2



 
 

 
Table of Contents 

 
1. Acknowledgements       4 

2. Introduction `       5 

3. OSI Application Layer       6 

4. Application of ENC28J60  & Ethernet Adaptor    7 

5. Codes         13 

6. References         19 

7. Direction for Future Work & Improvement    20 

 

 3



 
 

1. Acknowledgements 
 

No part of this work would have been possible without the active support and 

guidance of Mr A Amalin Prince. His constant support and encouragement let me take up the 

challenge of a new and hitherto forgotten transmission code for Ethernet.   

 

I sincerely thank the encouragement by Mr M T Abhilash, Lab-in-charge, PSoC 

Lab, BITS Pilani Goa Campus who has allowed students like us access to lab facilities often at 

odd hours. 

  

Since, this project has been a culmination of my learning at BITS Pilani Goa 

Campus over four years, I would like to thank all my instructors especially Mrs Anita Agrawal, 

Mr Nitin Sharma, Mr A Khadke whose approach to problem solving has taught me many 

lessons some of which I have tried to incorporate in this work.  

 

Of course, none of this would ever have been possible without the support from 

Cypress Semiconductors, San Jose. Mr Ashish Garg, Strategic Marketing Engineer, Mr 

Kaushik Subhramaniam Narayanan have been our companions through this journey. Equally 

significant have been the support of Mr Kamal Gunsagar, Vice President, Business 

Development, Cypress Semiconductor, Mr Patrick Kane, Director, Cypress University 

Alliance, Mr Jeff Dahlin, Principal Application Engineer, Mr Dave van Ess, Principal 

Application Engineer and Chief of Technical Staff, Mr Ganesh Raja, the PSoC Master who 

have all regularly reviewed the work done and have made suggestions. 

 

 Though this project is complete in itself, I would hope future readers of this report pick 

up this application and deploy the versatility of PSoC and the ease of data transmission using 

this new transmission code.  

 

Aalap Tripathy 

2004P3PS208 

 4



 
 

 

2. Introduction 
 
 

Ethernet Applications for a Microprocessor has tremendous implication for 

internetworking devices. Though a vast multitude of such devices exist today, there are 

currently no known applications for Ethernet using Cypress’ Programmable System on Chip. 

Whereas some critics point to the lack of speed of the M8C CPU on the PSoC to successfully 

deploy IEEE 802.3 Ethernet Standard, this project has been successfully able to deploy a 9 bit 

transmission code using the UART (Tx and Rx) module in both duplex and half duplex modes.  

 

Further, by using a Ethernet Controller, the UART data was also observed using 

Ethereal Packet Capture utilities. Therefore, despite speed limitations, we might still be able 

send Ethernet Packets though the effective transmission rate is limited to Micorcontroller 

processing speed.  

 

The ideal result for this project was implementation of a DC balanced (no residual DC 

due to continuous pull ups and pull downs) transmission code. However, it was later explored 

that such an implementation would be impossible because of PSoC’s speed limitations. It was 

also learnt that Engineers at Cypress are also aiming to deploy onboard native Ethernet Support 

in the next generation of PSoC Chips.  

 

This project aims to improve data transmission efficiency and bring about DC balance 

by sending 10 bits for every 8 bits to be transmitted. This is based on the results of Widmer and 

Franaszek (paper attached in Appendix). Their theoretical results are to be tested using a real 

world application. When their original paper was published, the Ethernet standard had not been 

developed and deployed. It is therefore important to explore the relevancy of their results for 

applications today.  

 

 

 5



 
 

3. OSI Application Layer Model  
 
 
 
 
 
 
 
 
 
 
 
 
 

 OSI – Open System Interconnection 
 Follows a Layered Approach 
 Allows better interoperability between software and hardware 
 Allows design of elaborate but highly reliable protocol stacks 
 Protocol stacks can be implemented either in hardware or software, or a mixture of both 

 
This project essentially operates at the Transport Layer of the OSI Stack. We are trying to 
enhance the functionality of Transmission Control Protocol/ User Datagram Protocol as 
defined in Ethernet (IEEE 802.3) Standard 
 
The Transport Layer 

 Provides transparent transfer of data between end users  
 Controls reliability of a given link  
 Some protocols are state full and connection oriented (cookies) 
 Example – TCP , UDP 

 
Further, since we are operating at a hardware level, we might also consider this project to be 
implementing this modification at the Physical layer. That is we are using the PSoC 
Microcontroller itself to generate the 10 bit transmission code based on the logic that has 
already been developed by Widmer and Franaszek in IBM JOURNAL FOR RESEARCH & 
DEVELOPMENT. Volume 27 No. 5 September 1983 
 
The Physical Layer 

 Defines all electrical and physical specifications for connecting devices 
 Major Functions -  

 Establishment & Termination of  Connections 
 Connection Resolution & Flow Control between Communicating Resources 
 Modulation & Conversion between Digital Data 

 Example – Radio, SCSI (Small Computer System Interface) 

 6



 
 

 
4. Application of ENC28J60 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• This is a single Ethernet Interface Chip which needs a differential power transformer 
and SPI enabled  microcontroller to function.  

• On the differential transmit pins (TPOUT+/TPOUT-), a 1:1 pulse transformer with a 
center tap is required. 

• The transformers should be rated for isolation of 2 kV or more to protect against static 
voltages. 

•  Both portions additionally require two 50Ω, 1% resistors and a 0.01 μF capacitor for 
proper termination. 

• A 2.5V regulator is incorporated internally to generate the necessary voltage. 
• However, a 10 μF capacitor for stability purposes from VCAP to GND 
• All power supply pins must be externally connected to the same 3.3V power source.  
• Similarly, all ground references should be externally connected to the same ground 

node. 
• Each VDD and VSS pin pair should have a 0.1 μF ceramic bypass capacitor placed as 

close to the pins as possible. (Not Shown) 
• Relatively high currents are necessary to operate the twisted pair interface, so all wires 

should be kept as short as possible and reasonable wire widths should be used on power 
wires to reduce resistive loss. 

• The internal analog circuitry in the ENC28J60 requires that an external 2 kΩ, 1% 
resistor be attached from RBIAS to ground. 

 
 
 
 
 

 7



 
 

 
 
 
 
 
 
 
 

• Level Shifting Using AND Gates (74HCT08 Quad AND) 
• MCU (PSoC) Works at 5V and the Pins of ENC28J60 work at 3.3V 

 
 
 
 
 
 
 
 
 

 
 
• Upon system Reset, the ENC28J60 will detect how the LED is connected and begin 

driving the LED to the default state 

 8



 
 

 
5. About Ethernet Adaptor (EAD) - Overview 
 

EAD is a Device that converts RS-232 protocol into TCP/IP protocol. It enables remote 

gauging, managing and control of a Serial Device through the network based on Ethernet 

and TCP/IP by connecting to the existing equipment with RS-232 serial interface. In other 

words, EAD is a protocol converter that transmits the data sent by Serial equipment as TCP/IP 

data type and converts back the TCP/IP data received through the network into serial data to 

transmit back to the equipment. EAD also supports UDP Protocol for broadcast kind of 

application. The EAD allows you to network-enable a variety of serial devices that were not 

originally designed to be networked. This capability brings the advantages of remote 

management and data accessibility to thousands of serial devices over the network. 

 

 
 
 
The EAD is the most cost effective Single port Serial-Ethernet communication device. The 

EAD supports RS232 serial communication allowing virtually any asynchronous serial device 

to be accessed over a network. Some models do Support RS 485 and RS422 

as add-on feature. As for the Internet connectivity, the EAD supports open network protocols 

such as TCP/IP allowing Serial Devices to be accessed over broadband network or 

conventional LAN (Local Area Network) environment. 

 

 9



 
 

The EAD provides the management console using Telnet and Serial console port under the 

password protection support. The EAD was designed to accommodate the unique requirements 

of the Retail POS, Security, Automation and Medical marketplaces. The EAD uses IP protocol 

for network communications. For network connections to the serial port TCP, UDP and Telnet 

protocols are used. 

 

The Ethernet adaptors have what is known as Hardware address or MAC address. It has 

its own addressing scheme based on a unique six-byte address. This is generally called 

Media Access and Control (MAC) address. One example of Ethernet Address is given below: 

00-50-C2-18-E0-00 or 00:50:C2:18:E0:00. 

 

To identify an individual computer/device on the IP network, the device must have a unique IP 

address in a Network. The current version of Internet Protocol uses a four-byte number, 

expressed in dotted decimal notation. Sample IP Address 192.168.0.250  

 

Every TCP connection is established using a destination IP address and a Port number. 

For example Telnet application commonly uses port number 23 of contacted IP number. 

The EAD’s Serial channel (port) can be associated with a specific TCP or UDP Port 

number.  

 
Serial Interface 

The EAD has a 9- pin RS 232 Male Serial connector in the Metal Box (MB) unit or RJ45 

male in Plastic Box Model or with Open Wire / with connectors for PCB Board Level 

product (depending on the model), which can be connected to any Serial device. 

 

 Network Interface 

EAD has one RJ45 Female 10 Base-T Ethernet port that supports up to 10 Mbps speed for 

connection to Local Area Network (LAN) through Hub or Switch. You can also use a 

Cross Cable to connect to PC’s LAN Card directly. 

  

 10



 
 

                                             
 
  
Configuration of the EAD adapter 

In order to work as desired the adapter needs to be configured as per the needs and the 

requirements of the application. The configuration requires the setting of various parameters 

related to serial communication like the baud rate etc and also the the various parameters 

related to LAN like the IP address, subnet etc. The adapter may be configured through the 

HyperTerminal or Telnet  

 

              
 

 11



 
 

 
 
A standard (IEEE 802.3)  Frame 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Ethernet frames are between 64 and 1518 bytes long. 
• The data payload can vary from 46-1500 bytes. Instead of simply placing data 

bits as such, this project transmits 10 bits for every 8 bits actually meant to 
be transmitted.  

 12



 
 

 
6. Primary Code Sequence 
 
 
//--------------------------------------------------- 
// C main line 
//---------------------------------------------------- 
/*  
In order to create this application I combined two UARTs so that I wouldn't 
need to have any external wiring. The software for the transmission is 
written 
for UART1 and for the reception for UART2. In reality this would be for the 
same UART. 
*/ 
 
 
#include <m8c.h>        // part specific constants and macros 
#include "PSoCAPI.h"    // PSoC API definitions for all User Modules 
#include "tx8_1.h" 
#include "rx8_1.h" 
 
 
#define NO_OF_CHARS 8 
#define MODULE_ADDRESS 0x5A 
 
unsigned char cPhase; 
//co-operative multitasking variable 
unsigned char cTx1Buffer[NO_OF_CHARS]= 
{MODULE_ADDRESS,0x01,0x02,0x03,0x04,0x05,0x06,0x07}; 
//transmit buffer 
//for thie example, bit 9 is only set for the address byte, which is the 
//first byte of a fixed 8 byte sequence 
unsigned char cRx1Buffer[NO_OF_CHARS]; 
//receive buffer 
/*two buffers are used because receive and transmit  
are in same chip and thus working simultaneously. 
Normally there would only be one working in half duplex and so the  
same buffer could be use for transmit and receive*/ 
unsigned char cTxPnt,cRxPnt; 
//pointers in buffer 
unsigned char cNextParity; 
//even parity calculated for the next byte 
 
 
unsigned char cTxPhase, cRxPhase; 
//state variables for processes 
unsigned char cBit9; 
//decoded bit 9 
unsigned char cPrimed; 
//indicator that bit 9 has been seen and address matched 
unsigned char cFlag; 
//to indicate end of received bloc 
 
void Transmit (void); 
void Receive (void); 
unsigned char ucharTxParity (unsigned char cPbyte); 

 13



 
 

 
 
void main() 
{ 
    // Insert your main routine code here. 
 TX8_1_EnableInt(); 
   
  RX8_1_Start(RX8_PARITY_EVEN); 
 RX8_1_EnableInt(); 
  
    
    
  
 M8C_EnableGInt; 
    while (1) 
    {   
     switch (cPhase) 
      { 
       case 0: 
        Transmit(); 
       break; 
      case 1: 
       Receive(); 
       break; 
      default: 
       cPhase=0; 
       break; 
     } 
    } 
} 
 
 
void Transmit (void) 
{//transmit data 
 int i,j; 
 switch (cTxPhase) 
 { 
  case 0: 
   //initiate transmission 
   //remember to disable receiver 
   if(ucharTxParity(cTx1Buffer[0])) 
   {//if parity is one, and this is the byte with 
   //bit 9=1 then we allow even parity  
    TX8_1_Start(TX8_PARITY_EVEN); 
   } 
   else {//if parity is zero, and this is the byte with 
   //bit 9=1 then we allow odd parity to toggle the result 
    TX8_1_Start(TX8_PARITY_ODD); 
 
   } 
    
   //in order to save time and memory prepare for the next 
byte during interrupt 
   cTxPnt=1; 
   //point at next location for the next character 
   //as the current one is going now, before an interrupt 
   if(ucharTxParity(cTx1Buffer[cTxPnt])) 

 14



 
 

   {//if parity is one, and this is the byte with 
   //bit 9=0 then we allow odd parity  
    cNextParity=(TX8_PARITY_ODD); 
   } 
   else {//if parity is zero, and this is the byte with 
   //bit 9=0 then we allow even parity to toggle the result 
    cNextParity=(TX8_PARITY_EVEN); 
 
   } 
   //this will be used in the interrupt 
   //done before actual transmission to guarantee 
   //transmitted character is not complete before the end of 
the calculation 
   TX8_1_SendData(cTx1Buffer[0]); 
   //start the usart 
       
   cTxPhase++; 
   break; 
  case 1: 
  //waiting for end of transmission 
   /*if End of transmission 
       { 
        TX8_1_Start(TX8_PARITY_EVEN); 
        //enable receiver      
       }*/ 
   break; 
  default: 
  //in real life wait at the end of the transmission,switch to 
waiting 
  //for reception 
   break; 
 } 
 cPhase++; 
} 
 
void Receive (void) 
{//receive and process data 
 switch (cRxPhase) 
 { 
  case 0: 
   cFlag=cRxPnt=cPrimed=0; 
   cRxPhase++; 
   break; 
  case 1: 
   //wait for data reception completion 
   if (cFlag) 
   { 
    cRxPhase++; 
   } 
   break; 
  default: 
   //interpret incoming data 
   break; 
 } 
 cPhase++; 
} 
 

 15



 
 

unsigned char ucharTxParity (unsigned char cPbyte) 
{ 
 unsigned char cI,cJ,cCount; 
 cJ=cPbyte; 
 cCount=0; 
 for (cI=0;cI<8;cI++) 
 {//counting the number of ones in the byte 
  if (cJ & 0x1) 
  { 
   cCount++; 
  } 
  cJ=cJ>>1; 
 } 
 return (cCount & 0x01);  
 //lsb indicates odd or even i.e. the actual parity bit 
} 
 
#pragma interrupt_handler Serial_Rx 
//corresponding ljmp in RX8_1.asm 
void Serial_Rx (void) 
{ 
 unsigned char cI; 
 //as message comes in 
 unsigned char cRxStatus; 
 //the first read clears this, so it maust be maintained. 
  
  
 //cehck for errors 
 cRxStatus=bRX8_1_ReadRxStatus(); 
 if (cRxStatus & (RX8_RX_OVERRUN_ERROR |RX8_RX_FRAMING_ERROR)) 
 { 
  //there is an error here- 
  //first read the byte to clear the register 
  cI=bRX8_1_ReadRxData(); 
  //reset the pointer 
  cRxPnt=0; 
  //restart pointer 
  cPrimed=0; 
  //clear flag indicating correct address 
 } 
 else { 
 //now we use the parity error to determine if bit 9 is set or not 
  cI=bRX8_1_ReadRxData(); 
  if (ucharTxParity(cI)) 
  {//here there is an odd parity expected 
   if (cRxStatus & (RX8_RX_PARITY_ERROR)) 
   {//odd parity exepcted, not seen and triggers an error  
    cBit9=0; 
   } 
   else {//odd parity exepcted, seen and no error seen 
    cBit9=1; 
   } 
  } 
  else { 
  //here there is an even parity expected 
   if (cRxStatus & (RX8_RX_PARITY_ERROR)) 
   {//even parity exepcted, not seen and triggers an error  

 16



 
 

    cBit9=1; 
   } 
   else {//even parity exepcted, seen and no error seen 
    cBit9=0; 
   } 
  } 
 
  if (cBit9) 
  {//if bit 9 set- control word 
   //check if matches address 
   if (cI==MODULE_ADDRESS) 
   { 
    cRx1Buffer[0]=cI; 
    cRxPnt=1; 
    cPrimed=1; 
    //indicate that the address has been seen 
   } 
   else { 
    cPrimed=0; 
    //clear flag to indicate incorrect address 
    cRxPnt=0; 
   } 
  } 
  else { 
   //check if ready to accept data 
   if(cPrimed) 
   { 
    cRx1Buffer[cRxPnt]=cI; 
    cRxPnt++; 
    if (cRxPnt>=NO_OF_CHARS) 
    { 
     cFlag=1; 
     //indicate to background that block has been 
received 
     cPrimed=0; 
    } 
   } 
  } 
 } 
  
} 
 
#pragma interrupt_handler Serial_Tx 
//corresponding ljmp in TX8_1.asm 
 
void Serial_Tx (void) 
{ 
 int i,j; 
 TX8_1_bReadTxStatus(); 
 //clear flag to allow next interrupt 
 if (cTxPnt<NO_OF_CHARS) 
 { 
  TX8_1_Start(cNextParity); 
  if(ucharTxParity(cTx1Buffer[cTxPnt+1])) 
  {//if parity is one, and this is the byte with 
  //bit 9=0 then we allow odd parity  
   cNextParity=(TX8_PARITY_ODD); 

 17



 
 

  } 
  else {//if parity is zero, and this is the byte with 
  //bit 9=0 then we allow even parity to toggle the result 
   cNextParity=(TX8_PARITY_EVEN); 
  } 
   
  //this will be used in the interrupt 
  TX8_1_SendData(cTx1Buffer[cTxPnt]); 
  cTxPnt++; 
 }  
 else {  
  cTxPnt=0; 
 } 
} 

 18



 
 

 19

 

7. References 
 

1. Kagan, Aubrey. “Implement a Nine-Data-Bit UART on a PC”, EDN Design Ideas, June 
6, 1998.  

2. Cypress Application Note - AN 2269 - Implement 9-Bit Protocol on the PSoC™ UART  
3. Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita, and K. Nagano, “Optical Pulse 

Formats for Fiber Optic Digital Communications,” IEEE Trans. Commun. COM-24, 
404-413 (1976). 

4. J. M. Griffiths, “Binary Code Suitable for Line Transmission,” Electron. Lett. ,79-81 
(1969). 

5. R. G. Kiwimagi, “Encoding/Decoding for Magnetic Record Storage Apparatus,” IBM 
Tech. Disclosure Bull. 18, 3147-3149 (1976). 

6. A. X. Widmer and P. A. Franaszek, “Transmission Code for High-speed Fibre-Optic 
Data Networks,” Electron. Lett. 19, 

7. P. A. Franaszek, “Sequence-State Coding for Digital Transmission,” BellSyst. Tech. J. 
47, 143-157 (1968). 

8. P. A. Franaszek, “Sequence-State Methods for Run-Length-Limited Coding,” IBM J. 
Res. Develop. 14,376-383 (1970). 

9. A. M. Patel, “Zero-Modulation Encoding in Magnetic Recording,” IBM J. Res. 
Develop. 19,366-378 (1975). 

10. Peter A. Franaszek, “A General Method for Channel Coding,” IBM J. Res. Develop. 
24,638-641 (1980). 

11. P. A. Franaszek, “Construction of Bounded Delay Codes for Discrete Noiseless 
Channels,” IBM J. Res. Develop. 26, 506-514 (1982). 

12. B. Marcus, “Sofic Systems and Encoding Data on Magnetic Tape,” Preliminary Report, 
Notices, Amer. Math. SOC2.9 , 43(1982). 

13. R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for Sliding Block Codes,” 
IEEE Trans. Info. Theory IT-29, 5-22 (1983). 

14. G. Nigel N. Martin, Glen G. Langdon, Jr., and Stephen J. P. Todd, “Arithmetic Codes 
for Constrained Channels,” IBM J. Res. Develop. 27,94-I06 (1983). 

15. Ta-Mu Chien, “Upper Bound on the Efficiency of DC Constrained Codes,’’ Bell Syst. 
Tech. J. 49, 2261-2287 (1970). 

16. J. J. Stiffler, “Theory of Synchronous Communications,” Prentice-Hall, Inc., 
Englewood Cliffs, NJ, 1971, pp. 368-372. 

17. Cypress Semiconductors Application Note - AN2013 - UART Receiver Errata 
Workaround 

18. Cypress Semiconductors Application Note - AN2081 – Originally Cypress Innovator 
Design Challenge Contest Entry 280 

19. http://www.psocdeveloper.com  
20. http://www.time-lines.com/ 
21. http://easypsoc.com/book/  
 
 

 
 

http://www.psocdeveloper.com/
http://www.time-lines.com/
http://easypsoc.com/book/


 
 

 20

6. Improvement & Future Work:  

 
1. This project has been able to successfully interface the PSoC to IEEE 802.3 Ethernet Standard using an 

Ethernet Adaptor Module. However the sheer flexibility of the PSoC makes it possible to program the 

PSoC itself as a Ethernet Adaptor. This aspect needs to be explored.  

2. Now that data transmission over Ethernet is possible, related applications can be developed – one example 

is – Mess Management System : Bar code readers can be interfaced to the PSoC. Everytime a successful 

identification is done, based on the time, a entry on the user table (which meal he is eating) can be 

updated. On board RAM on the PSoC will be unsuitable, so additional components may be interfaced. At 

the end of a week/month, the cumulative data can be broadcast to a central server or system for record 

keeping and bill generation.  

 


